بواسطة في 6 ساعات
3 المشاهدات

DeepSeekのOpenAIデータ不正利用報道について思うこと|hibiki Deepseek coder - Can it code in React? Claude-3.5-sonnet 다음이 deepseek ai Coder V2. 2023년 11월 2일부터 DeepSeek의 연이은 모델 출시가 시작되는데, 그 첫 타자는 DeepSeek Coder였습니다. 허깅페이스 기준으로 지금까지 DeepSeek이 출시한 모델이 48개인데, 2023년 DeepSeek과 비슷한 시기에 설립된 미스트랄AI가 총 15개의 모델을 내놓았고, 2019년에 설립된 독일의 알레프 알파가 6개 모델을 내놓았거든요. 중국 AI 스타트업 DeepSeek이 GPT-4를 넘어서는 오픈소스 AI 모델을 개발해 많은 관심을 받고 있습니다. AI 학계와 업계를 선도하는 미국의 그늘에 가려 아주 큰 관심을 받지는 못하고 있는 것으로 보이지만, 분명한 것은 생성형 AI의 혁신에 중국도 강력한 연구와 스타트업 생태계를 바탕으로 그 역할을 계속해서 확대하고 있고, 특히 중국의 연구자, 개발자, 그리고 스타트업들은 ‘나름의’ 어려운 환경에도 불구하고, ‘모방하는 중국’이라는 통념에 도전하고 있다는 겁니다. DeepSeek 모델은 처음 2023년 하반기에 출시된 후에 빠르게 AI 커뮤니티의 많은 관심을 받으면서 유명세를 탄 편이라고 할 수 있는데요. 바로 직후인 2023년 11월 29일, DeepSeek LLM 모델을 발표했는데, 이 모델을 ‘차세대의 오픈소스 LLM’이라고 불렀습니다. To handle data contamination and tuning for particular testsets, we now have designed recent drawback units to assess the capabilities of open-supply LLM models.

DeepSeek AI raises national security concerns, U.S. officials ... AGIEval: A human-centric benchmark for evaluating basis models. CLUE: A chinese language language understanding evaluation benchmark. Mmlu-professional: A more strong and difficult multi-activity language understanding benchmark. Instruction-following analysis for large language models. Stable and low-precision coaching for big-scale vision-language models. We validate our FP8 mixed precision framework with a comparison to BF16 coaching on high of two baseline fashions across completely different scales. The most effective model will fluctuate but you possibly can check out the Hugging Face Big Code Models leaderboard for some steerage. For extra tutorials and ideas, take a look at their documentation. As developers and enterprises, pickup Generative AI, I only expect, more solutionised fashions in the ecosystem, could also be more open-source too. Smoothquant: Accurate and efficient put up-training quantization for giant language models. DeepSeek's first-technology of reasoning models with comparable performance to OpenAI-o1, together with six dense models distilled from DeepSeek-R1 primarily based on Llama and Qwen. The paper presents a brand new large language model called DeepSeekMath 7B that's specifically designed to excel at mathematical reasoning. "include" in C. A topological type algorithm for doing that is provided within the paper.

역시 중국의 스타트업인 이 DeepSeek의 기술 혁신은 실리콘 밸리에서도 주목을 받고 있습니다. Moonshot AI 같은 중국의 생성형 AI 유니콘을 이전에 튜링 포스트 코리아에서도 소개한 적이 있는데요. 이 회사의 소개를 보면, ‘Making AGI a Reality’, ‘Unravel the Mystery of AGI with Curiosity’, ‘Answer the Essential Question with Long-termism’과 같은 표현들이 있는데요. AI 커뮤니티의 관심은 - 어찌보면 당연하게도 - Llama나 Mistral 같은 모델에 집중될 수 밖에 없지만, DeepSeek이라는 스타트업 자체, 이 회사의 연구 방향과 출시하는 모델의 흐름은 한 번 살펴볼 만한 중요한 대상이라고 생각합니다. 다시 DeepSeek 이야기로 돌아와서, DeepSeek 모델은 그 성능도 우수하지만 ‘가격도 상당히 저렴’한 편인, 꼭 한 번 살펴봐야 할 모델 중의 하나인데요. DeepSeek의 오픈소스 모델 DeepSeek-V2, 그리고 DeepSeek-Coder-V2 모델은 독자적인 ‘어텐션 메커니즘’과 ‘MoE 기법’을 개발, 활용해서 LLM의 성능을 효율적으로 향상시킨 결과물로 평가받고 있고, 특히 DeepSeek-Coder-V2는 현재 기준 가장 강력한 오픈소스 코딩 모델 중 하나로 알려져 있습니다. DeepSeek 모델 패밀리는, 특히 오픈소스 기반의 LLM 분야의 관점에서 흥미로운 사례라고 할 수 있습니다. 특히 DeepSeek-Coder-V2 모델은 코딩 분야에서 최고의 성능과 비용 경쟁력으로 개발자들의 주목을 받고 있습니다. 특히, DeepSeek만의 혁신적인 MoE 기법, 그리고 MLA (Multi-Head Latent Attention) 구조를 통해서 높은 성능과 효율을 동시에 잡아, 향후 주시할 만한 AI 모델 개발의 사례로 인식되고 있습니다.

‘DeepSeek’은 오늘 이야기할 생성형 AI 모델 패밀리의 이름이자 이 모델을 만들고 있는 스타트업의 이름이기도 합니다. DeepSeek 모델 패밀리의 면면을 한 번 살펴볼까요? 이렇게 한 번 고르게 높은 성능을 보이는 모델로 기반을 만들어놓은 후, 아주 빠르게 새로운 모델, 개선된 버전을 내놓기 시작했습니다. 이렇게 ‘준수한’ 성능을 보여주기는 했지만, 다른 모델들과 마찬가지로 ‘연산의 효율성 (Computational Efficiency)’이라든가’ 확장성 (Scalability)’라는 측면에서는 여전히 문제가 있었죠. 당시에 출시되었던 모든 다른 LLM과 동등하거나 앞선 성능을 보여주겠다는 목표로 만든 모델인만큼 ‘고르게 좋은’ 성능을 보여주었습니다. DeepSeek Coder는 Llama 2의 아키텍처를 기본으로 하지만, deepseek 트레이닝 데이터 준비, 파라미터 설정을 포함해서 처음부터 별도로 구축한 모델로, ‘완전한 오픈소스’로서 모든 방식의 상업적 이용까지 가능한 모델입니다. Their mannequin is better than LLaMA on a parameter-by-parameter foundation. We file the professional load of the 16B auxiliary-loss-based baseline and the auxiliary-loss-free mannequin on the Pile take a look at set. Auxiliary-loss-free load balancing technique for mixture-of-experts. A easy strategy is to apply block-smart quantization per 128x128 parts like the way we quantize the model weights. My earlier article went over how one can get Open WebUI set up with Ollama and Llama 3, nevertheless this isn’t the one means I benefit from Open WebUI. DeepSeek-Coder-V2, costing 20-50x occasions less than other fashions, represents a big upgrade over the unique DeepSeek-Coder, with more in depth training information, larger and extra efficient fashions, enhanced context dealing with, and advanced methods like Fill-In-The-Middle and Reinforcement Learning.
In the event you loved this information and you want to receive more info regarding deepseek ai kindly visit our internet site.
المواضيع: deepseek ai, deep seek
كن الشخص الأول المعجب بهذا.